AJ Journal of Medical Sciences

Volume: 1 Issue: 1

  • Open Access
  • Review Article

Multiomics: Concepts, Methods and Applications

A R Aroor1,∗

1Associate Research Professor, Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Center for Diabetes and Cardiovascular Research, Dalton Cardiovascular Research Center, School of Medicine, NR Investigator, University of Missouri, MO, Columbia, USA.
 

Corresponding author. A R Aroor: [email protected]

 

Year: 2024, Page: 12-15, Doi: https://doi.org/10.71325/ajjms.v1i1.arora

Received: Dec. 20, 2024 Accepted: Dec. 23, 2024 Published: Dec. 30, 2024

Abstract

Multiomics is a high-throughput technology with multilayered system biology approach incorporating bioinformatic analysis of the data. At present it includes genomics, epigenomics, transcriptomics, proteomics, metabolomics, and gut microbiomics with advancement to the level of single cell analysis. Multiomics is an advancing approach (1) to understand the pathobiology of disease, (2) to identify sensitive biomarkers for the diagnosis of diseases as well as in monitoring and (3) to identify disease specific targets to treat the patient in the context of precision medicine as targeted therapeutics. In the present review, a brief account of various multiomic techniques is considered and relevant examples are pondered to reflect their applications in both preclinical and clinical translational research.

Keywords: Multiomics, Genomics, Proteomics, Metabolomics, Pathobiology

References

  1. Wei S, Tang W, Chen D, Xiong J, Xue L, Dai Y. Multiomics insights into the female reproductive agingAgeing Res Rev. 2024;95(102245). Available from: https://doi.org/10.1016/j.arr.2024.102245

  2. Chen C, Wang J, Pan D, Wang X, Xu Y, Yan J. Applications of multi-omics analysis in human diseasesMedComm. 1931;4(4):e315. Available from: https://doi.org/10.1002/mco2.315

  3. MoTrPAC Study Group; Lead Analysts; MoTrPAC Study Group. Temporal dynamics of the multiomic response to endurance exercise trainingNature. 2024;629(8010):174–183. Available from: https://doi.org/10.1038/s41586-023-06877-w

  4. Liang G, Cao W, Tang D, Zhang H, Yu Y, Ding J, et al. NanomedomicsClick to copy article linkACS Nano. 2024;18(17):10979–11024. Available from: https://doi.org/10.1021/acsnano.3c11154

  5. Lopez-Lee C, Torres E, Carling G, Gan L. Mechanisms of sex differences in Alzheimer's diseaseNeuron. 2024;112(8):1208–1221. Available from: https://doi.org/10.1016/j.neuron.2024.01.024

  6. Mackowiak B, Fu Y, Maccioni L, Gao B. Alcohol-associated liver diseaseJ Clin Invest. 2024;134(3):e176345. Available from: https://doi.org/10.1172/jci176345

  7. Yan C, Bao J, JJ. Exploring the interplay of gut microbiota, inflammation, and LDL-cholesterol: a multiomics Mendelian randomization analysis of their causal relationship in acute pancreatitis and non-alcoholic fatty liver diseaseJ Transl Med. 2024;22(1):179. Available from: https://doi.org/10.1186/s12967-024-04996-0

  8. Cui H, Wang C, Maan H, Pang K, Luo F, Duan N. scGPT: toward building a foundation model for single-cell multi-omics using generative AINat Methods. 2024;21(8):1470–1480. Available from: https://doi.org/10.1038/s41592-024-02201-0

  9. Ewald JD, Zhou G, Lu Y, Kolic J, Ellis C, Johnson JD, et al. Web-based multi-omics integration using the Analyst software suiteNature Protocol. 2024;19(5):1467–1497. Available from: https://doi.org/10.1038/s41596-023-00950-4

  10. Roehrig A, Hirsch TZ, Pire A, Morcrette G, Gupta B, Marcaillou C, et al. Single-cell multiomics reveals the interplay of clonal evolution and cellular plasticity in hepatoblastomaNature Communications. 2024;15(1):3031. Available from: https://doi.org/10.1038/s41467-024-47280-x

  11. Wang C, Qiu J, Liu M, Wang Y, Yu Y, Liu H, et al. Microfluidic Biochips for Single-Cell Isolation and Single-Cell Analysis of Multiomics andExosomesAdv Sci (Weinh). 2024;11(28):e2401263. Available from: https://doi.org/10.1002/advs.202401263

  12. Lim J, Park C, Kim M, Kim H, Kim J, Lee DS. Advances in single-cell omics and multiomics for high-resolution molecular profilingExp Mol Med. 2024;56(3):515–526. Available from: https://doi.org/10.1038/s12276-024-01186-2

  13. Madden EB, Hindorff LA, Bonham VL, Akintobi TH, Burchard EG, Baker KE, et al. Advancing genomics to improve health equityNat Genet. 2024;56(5):752–757. Available from: https://doi.org/10.1038/s41588-024-01711-z

  14. Scarano C, Veneruso I, RRDS, GDB, AS, D'Argenio V. The Third-Generation Sequencing Challenge: Novel Insights for the Omic SciencesBiomolecules. 2024;14(5):568. Available from: https://doi.org/10.3390/biom14050568

  15. Jain S, Eadon MT. Spatial transcriptomics in health and diseaseNat Rev Nephrol. 2024;20(10):659–671. Available from: https://doi.org/10.1038/s41581-024-00841-1

  16. Zhang T, Zhao F, Lin Y, Liu M, Zhou H, Cui F, et al. Integrated analysis of single-cell and bulk transcriptomics develops a robust neuroendocrine cell-intrinsic signature to predict prostate cancer progressionTheranostics. 2024;14(3):1065–1080. Available from: https://doi.org/10.7150/thno.92336

  17. Cilento MA, Sweeney CJ, Butler LM. Spatial transcriptomics in cancer research and potential clinical impact: a narrative reviewJ Cancer Res Clin Oncol. 2024;150(6):296. Available from: https://doi.org/10.1007/s00432-024-05816-0

  18. Li H, Li D, Ledru N, Xuanyuan Q, Wu H, Asthana A, et al. Transcriptomic, epigenomic, and spatial metabolomic cell profiling redefines regional human kidney anatomyCell Metab. 2024;36(5):1105–1125. Available from: https://doi.org/10.1016/j.cmet.2024.02.015

  19. Armingol E, Baghdassarian HM, Lewis NE. The diversification of methods for studying cell-cell interactions and communicationNat Rev Genet. 2024;25(6):381–400. Available from: https://doi.org/10.1038/s41576-023-00685-8

  20. Mathur R, Wang Q, Schupp PG, Nikolic A, Hilz S, Hong C, et al. Glioblastoma evolution and heterogeneity from a 3D whole-tumor perspectiveCell. 2024;187(2):446–463. Available from: https://doi.org/10.1016/j.cell.2023.12.013

  21. Villiger L, Joung J, Koblan L, Weissman J, Abudayyeh OO, Gootenberg JS. CRISPR technologies for genome, epigenome and transcriptome editingNat Rev Mol Cell Biol. 2024;25(6):464–487. Available from: https://doi.org/10.1038/s41580-023-00697-6

  22. Kiri S, Ryba T. Cancer, metastasis, and the epigenomeMol Cancer. 2024;23(1):154. Available from: https://doi.org/10.1186/s12943-024-02069-w

  23. Wu Z, Qu J, Zhang W, Liu GH. Stress, epigenetics, and aging: Unraveling the intricate crosstalkMolecular Cell. 2024;84(1):34–54. Available from: https://dx.doi.org/10.1016/j.molcel.2023.10.006

  24. Pietzner M, Uluvar B, Kolnes KJ, Jeppesen PB, Frivold SV, Skattebo Ø, et al. Systemic proteome adaptions to 7-day complete caloric restriction in humansNature Metabolism. 2024;6(4):764–777. Available from: https://dx.doi.org/10.1038/s42255-024-01008-9

  25. Tholey A, Schlüter H. Top-down proteomics and proteoforms - special issueProteomics. 2024;24(3-4):2200375. Available from: https://doi.org/10.1002/pmic.202200375

  26. Shen L, Zhang Z, Wu P, Yang J, Cai Y, Chen K, et al. Mechanistic insight into glioma through spatially multidimensional proteomicsScience Advances. 2024;10(7):1721. Available from: https://dx.doi.org/10.1126/sciadv.adk1721

  27. Strauss MT, Bludau I, Zeng WFF, Voytik E, Ammar C, Schessner JP, et al. AlphaPept, a modern and open framework for MS-based proteomicsNat Commun. 2009;15(1):2168. Available from: https://doi.org/10.1038/s41467-024-46485-4

  28. Fedorov II, Protasov SA, Tarasova IA, Gorshkov MV. Ultrafast ProteomicsBiochemistry (Moscow). 2024;89(8):1349–1361. Available from: https://dx.doi.org/10.1134/s0006297924080017

  29. Tao J, Li J, Fan X, Jiang C, Wang Y, Qin M, et al. Unraveling the protein post-translational modification landscape: Neuroinflammation and neuronal death after strokeAgeing Research Reviews. 2024;101:102489. Available from: https://dx.doi.org/10.1016/j.arr.2024.102489

  30. Zhang N, Wu J, Zheng Q. Chemical proteomics approaches for protein post-translational modification studiesBiochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 2024;1872(4):141017. Available from: https://dx.doi.org/10.1016/j.bbapap.2024.141017

  31. Greenblatt JF, Alberts BM, Krogan NJ. Discovery and significance of protein-protein interactions in health and diseaseCell. 2024;187(23):6501–6517. Available from: https://dx.doi.org/10.1016/j.cell.2024.10.038

  32. Si S, Liu H, Xu L, Zhan S. Identification of novel therapeutic targets for chronic kidney disease and kidney function by integrating multi-omics proteome with transcriptomeGenome Medicine. 2024;16(1):84. Available from: https://dx.doi.org/10.1186/s13073-024-01356-x

  33. Zhang S, Wang Z, Wang Y, Zhu Y, Zhou Q, Jian X, et al. A metabolomic profile of biological aging in 250,341 individuals from the UK BiobankNat Commun. 2024;15(1):8081. Available from: https://doi.org/10.1038/s41467-024-52310-9

  34. Luo YQ, Zhang CY, Nong XZ, Gao Y, Wang L, Ji G, et al. Metabolomics incirrhosis: Recent advances and opportunitiesClin Chim Acta. 2024;557:117886. Available from: https://doi.org/10.1016/j.cca.2024.117886

  35. Yang S, Liu R, Xin Z, Zhu Z, Chu J, Zhong P, et al. Plasma Metabolomics Identifies Key Metabolites and Improves Prediction of Diabetic Retinopathy: Development and Validation across Multinational CohortsOphthalmology. 2024;131(12):1436–1446. Available from: https://doi.org/10.1016/j.ophtha.2024.07.004

  36. Berrell N, Sadeghirad H, Blick T, Bidgood C, Leggatt GR, O'Byrne K, et al. Metabolomics at the tumor microenvironment interface: Decoding cellular conversationsMed Res Rev. 2024;44(3):1121–1146. Available from: https://doi.org/10.1002/med.22010

  37. Vicari M, Mirzazadeh R, Nilsson A, Shariatgorji R, Bjärterot P, Larsson L, et al. Spatial multimodal analysis of transcriptomes and metabolomes in tissuesNat Biotechnol. 2024;42(7):1046–1050. Available from: https://doi.org/10.1038/s41587-023-01937-y

  38. Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanismsNat Rev Mol Cell Biol. 2016;17(7):451–459. Available from: https://doi.org/10.1038/nrm.2016.25

  39. Wang R, Li B, Lam SM, Shui G. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progressionJ Genet Genomics. 2020;47(2):69–83. Available from: https://doi.org/10.1016/j.jgg.2019.11.009

  40. Bujak R, Struck-Lewicka W, Markuszewski MJ, Kaliszan R. Metabolomics for laboratory diagnosticsJ Pharm Biomed Anal. 2015;113:108–120. Available from: https://doi.org/10.1016/j.jpba.2014.12.017

  41. Khamis MM, Adamko DJ, El-Aneed A. Mass spectrometric based approaches in urine metabolomics and biomarker discoveryMass Spectrom Rev. 2017;36(2):115–134. Available from: https://doi.org/10.1002/mas.21455

  42. Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell heterogeneityNat Rev Immunol. 2018;18(1):35–45. Available from: https://doi.org/10.1038/nri.2017.76

  43. Han X, Zhou Z, Fei L, Sun H, Wang R, Chen Y, et al. Construction of a human cell landscape at single-cell levelNature. 2020;581(7808):303–309. Available from: https://doi.org/10.1038/s41586-020-2157-4

  44. Collin J, Queen R, Zerti D, Bojic S, Dorgau B, Moyse N, et al. A single cell atlas of human cornea that defines its development, limbal progenitor cells and their interactions with the immune cellsOcul Surf. 2021;21:279–298. Available from: https://doi.org/10.1016/j.jtos.2021.03.010

  45. Ferchen K, Song B, Grimes L, H. A primer on single-cell genomics in myeloid biologyCurr Opin Hematol. 2021;28(1):11–17. Available from: https://doi.org/10.1097/MOH.0000000000000623

  46. Chang JG, Tu SJ, Huang CM, Chen YC, Chiang HS, Lee YT, et al. Single-cell RNA sequencing of immune cells in patients with acute goutSci Rep. 2022;12:22130. Available from: https://doi.org/10.1038/s41598-022-25871-2

  47. Shiao SL, KHG, NI, AH, RB, Shah A, et al. Single-cell and spatial profiling identify three response trajectories to pembrolizumab and radiation therapy in triple negative breast cancerCancer Cell. 2024;42(1):70–84. Available from: https://doi.org/10.1016/j.ccell.2023.12.012

  48. Bandyopadhyay S, Duffy MP, Ahn KJ, Sussman JH, Pang M, Smith D, et al. Mapping th cellular biogeography of human bone marrow niches using single-cell transcriptomics and proteomic imagingCell. 2024;187(12):3120–3140. Available from: https://doi.org/10.1016/j.cell.2024.04.013

  49. Hu J, Wang SG, Hou Y, Chen Z, Liu L, Li R, et al. Multiomic profiling of clear cell renal cell carcinoma identifies metabolic reprogramming associated with disease progressionNat Genet. 2024;56(3):442–457. Available from: https://doi.org/10.1038/s41588-024-01662-5

  50. Desai TA, Hedman ÅK, Dimitriou M, Koprulu M, Figiel S, Yin W, et al. Identifying proteomic risk factors for overall, aggressive, and early onset prostate cancer using Mendelian Randomisation and tumour spatial transcriptomicseBioMedicine. 2024;105:105168. Available from: https://dx.doi.org/10.1016/j.ebiom.2024.105168

  51. Patel AG, Ashenberg O, Collins NB, Segerstolpe Å, Jiang S, Slyper M, et al. A spatial cell atlas of neuroblastoma reveals developmental, epigenetic and spatial axis of tumor heterogeneitybioRxiv. 2024. Available from: https://doi.org/10.1101/2024.01.07.574538

  52. Sul WJ. Host-Associated MicrobiomeJ Microbiol. 2024;62(3):135–136. Available from: https://doi.org/10.1007/s12275-024-00135-y

  53. Ratiner K, Ciocan D, Abdeen SK, Elinav E. Utilization of the microbiome in personalized medicineNat Rev Microbiol. 2024;22(5):291–308. Available from: https://doi.org/10.1038/s41579-023-00998-9

  54. RL, JL, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseasesSignal Transduct Target Ther. 2024;17(1):19. Available from: https://doi.org/10.1038/s41392-023-01722-y

  55. White MT, Sears CL. The microbial landscape of colorectal cancerNat Rev Microbiol. 2024;22(4):240–254. Available from: https://doi.org/10.1038/s41579-023-00973-4

  56. Verdegaal AA, Goodman AL. Integrating the gut microbiome and pharmacologySci Transl Med. 2024;16(732):eadg8357. Available from: https://doi.org/10.1126/scitranslmed.adg8357

  57. Matsuoka T, Yashiro M. Bioinformatics Analysis and Validation of Potential Markers Associated with Prediction and Prognosis of Gastric CancerInt J Mol Sci. 2024;25(11):5880. Available from: https://doi.org/10.3390/ijms25115880

  58. Li C, Lin X, Lin Q, Lin Y, Lin H. Jiangu granules ameliorate postmenopausal osteoporosis via rectifying bone homeostasis imbalance: A network pharmacology analysis based on multi-omics validationPhytomedicine. 2024;122:155137.

  59. Yang S, Wei Z, Luo J, Wang X, Chen G, Guan X, et al. Integrated bioinformatics and multiomics reveal Liupao tea extract alleviatin NAFLD via regulating hepatic lipid metabolism and gut microbiotaPhytomedicine. 2024;132:155834. Available from: https://doi.org/10.1016/j.phymed.2024.155834

  60. Gu Y, Li Z, Li H, Yi X, Liu X, Zhang Y, et al. Exploring the efficacious constituents and underlying mechanisms of sini decoction for sepsis treatment through network pharmacology and multi-omicsPhytomedicine. 2024;123:155212. Available from: https://doi.org/10.1016/j.phymed.2023.155212

  61. Chen J, Ruan X, Sun Y, Lu S, Hu S, Yuan S. Multi-omic insight into the molecular networks of mitochondrial dysfunction in the pathogenesis of inflammatory bowel diseaseEBioMedicine. 2024;99:104934. Available from: https://doi.org/10.1016/j.ebiom.2023.104934

  62. Daskalakis NP, Iatrou A, Chatzinakos C, Jajoo A, Snijders C, Wylie D, et al. Systems biology dissection of PTSD and MDD across brain regions, cell types, and bloodScience. 2024;384(6698):3707. Available from: https://doi.org/10.1126/science.adh3707

Cite this article

A R Aroor. Multiomics: Concepts, Methods and Applications. AJ J Med Sci 2024;1(1):12–15

Views
288
Downloads
85
Citations