AJ Journal of Medical Sciences

Volume: 2 Issue: 2

  • Open Access
  • Review Article

The Microbiome-Neurodegeneration Nexus in Multiple Sclerosis

B Nayana1, K C Sandeep2, N S Uzma2,∗

1Assistant Professor, Department of Microbiology and Botany, School of Sciences, Jain (Deemed-to-be University), Bengaluru,
Karnataka, India.
2Assistant Professor, Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be University), Bengaluru,
Karnataka, India.

∗ Corresponding author.
N S Uzma
[email protected]

Year: 2025, Page: 52-59, Doi: https://doi.org/10.71325/ajjms.v2i2.25.19

Received: March 26, 2025 Accepted: May 16, 2025 Published: July 16, 2025

Abstract

A significant amount of the health care burden in contemporary society is attributed to neurodegenerative diseases (NDs). Because of longer lifespans and changes in the world's population, the prevalence of these diseases will rise even more in the future decades. The primary cause of NDs is the progressive degeneration of neurones, which leads to dementia, motor impairments, and other associated functional impairments. Numerous illnesses, including Huntington's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), and Amyotrophic Lateral Sclerosis (ALS), are brought on by these alterations. Neurone death, dendritic loss, and demyelination are general pathophysiological indicators. Furthermore, a number of molecular processes have been postulated to explain the pathophysiology of these disorders, while the precise reason is still unknown. Neuroinflammation and oxidative stress are the most prevalent. With regard to neuroinflammation, we attempt to draw attention to a neglected factor in the aetiology of multiple sclerosis in this review. Protein domains found in a number of bacteria imitate the cellular proteins found in the nervous system. As a result, even when the viruses are removed from the body, the immune system never stops functioning. Native proteins are nonetheless regarded as alien proteins, and the cells die as a result of subsequent immune cell activation and communication. As a result, we have compiled the research supporting this theory to link it to other chemical pathways in NDs.

Keywords: Immune system, Autoimmunity, Multiple Sclerosis, Molecular Mimicry, Neurodegenerative Diseases (NDs)

References

  1. Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010–2050) estimated using the 2010 censusNeurology. 2013;80(19):1778–1783. Available from: https://dx.doi.org/10.1212/wnl.0b013e31828726f5

  2. DeMaio A, Mehrotra S, Sambamurti K, Husain S. The role of the adaptive immune system and T cell dysfunction in neurodegenerative diseasesJournal of Neuroinflammation. 2022;19(1):1–19. Available from: https://dx.doi.org/10.1186/s12974-022-02605-9

  3. Rostami A, Ciric B. Role of Th17 cells in the pathogenesis of CNS inflammatory demyelinationJournal of the Neurological Sciences. 2013;333(1-2):76–87. Available from: https://doi.org/10.1016/j.jns.2013.03.002

  4. Rostgaard K, Balfour HH, Jarrett R, Erikstrup C, Pedersen O, Ullum H, et al. Primary Epstein-Barr virus infection with and without infectious mononucleosisPLOS ONE. 2019;14(12):1–14. Available from: https://dx.doi.org/10.1371/journal.pone.0226436

  5. Casanova JL, Abel L. The human model: a genetic dissection of immunity to infection in natural conditionsNature Reviews Immunology. 2004;4(1):55–66. Available from: https://doi.org/10.1038/nri1264

  6. Tran VTA, Lee LP, Cho H. Neuroinflammation in neurodegeneration via microbial infectionsFrontiers in Immunology. 2022;13:1–18. Available from: https://dx.doi.org/10.3389/fimmu.2022.907804

  7. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the detailsJournal of Neurochemistry. 2016;139(S2):136–153. Available from: https://dx.doi.org/10.1111/jnc.13607

  8. Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative diseaseNature Reviews Immunology. 2014;14(7):463–477. Available from: https://doi.org/10.1038/nri3705

  9. Fymat AL. Multiple Sclerosis: I. Symptomatology and EtiologyJournal of Neurology and Psychology Research. 2023;4(1):1–46. Available from: https://researchnovelty.com/management_research/article_pdf/1684580323Updated%20Article__CS050523.pdf

  10. Ziemssen T, Bhan V, Chataway J, Chitnis T, Cree BAC, Havrdova EK, et al. Secondary progressive multiple sclerosis: a review of clinical characteristics, definition, prognostic tools, and disease-modifying therapiesNeurology: Neuroimmunology & Neuroinflammation. 2022;10(1):1–12. Available from: https://doi.org/10.1212/nxi.0000000000200064

  11. Miller DH, Leary SM. Primary-progressive multiple sclerosisThe Lancet Neurology. 2007;6(10):903–912. Available from: https://doi.org/10.1016/S1474-4422(07)70243-0

  12. Kalinowska-Łyszczarz A, Guo Y, Lucchinetti CF. Update on pathology of central nervous system inflammatory demyelinating diseasesNeurologia i neurochirurgia polska. 2022;56(3):201–209. Available from: https://doi.org/10.5603/pjnns.a2022.0046

  13. Hafler DA, Weiner HL. T Cells in Multiple Sclerosis and Inflammatory Central Nervous System DiseasesImmunological Reviews. 1987;100(1):307–332. Available from: https://dx.doi.org/10.1111/j.1600-065x.1987.tb00537.x

  14. Arango MT, Perricone C, Kivity S, Cipriano E, Ceccarelli F, Valesini G, et al. HLA-DRB1 the notorious gene in the mosaic of autoimmunityImmunologic Research. 2017;65(1):82–98. Available from: https://dx.doi.org/10.1007/s12026-016-8817-7

  15. Parnell GP, Booth DR. The Multiple Sclerosis (MS) Genetic Risk Factors Indicate both Acquired and Innate Immune Cell Subsets Contribute to MS Pathogenesis and Identify Novel Therapeutic OpportunitiesFrontiers in Immunology. 2017;8:1–6. Available from: https://dx.doi.org/10.3389/fimmu.2017.00425

  16. Marrodan M, Alessandro L, Farez MF, Correale J. The role of infections in multiple sclerosisMultiple Sclerosis Journal. 2019;25(7):891–901. Available from: https://dx.doi.org/10.1177/1352458518823940

  17. Dobson R, Giovannoni G. Multiple sclerosis – a reviewEuropean Journal of Neurology. 2019;26(1):27–40. Available from: https://dx.doi.org/10.1111/ene.13819

  18. Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple Sclerosis: Mechanisms and ImmunotherapyNeuron. 2018;97(4):742–768. Available from: https://dx.doi.org/10.1016/j.neuron.2018.01.021

  19. Donati D. Viral infections and multiple sclerosisDrug Discovery Today: Disease Models. 2020;32(Part A):27–33. Available from: https://doi.org/10.1016/j.ddmod.2020.02.003

  20. Cortese M, Leng Y, Bjornevik K, Mitchell M, Healy BC, Mina MJ, et al. Serologic Response to the Epstein-Barr Virus Peptidome and the Risk for Multiple SclerosisJAMA Neurology. 2024;81(5):515–524. Available from: https://dx.doi.org/10.1001/jamaneurol.2024.0272

  21. Vlad B, Neidhart S, Hilty M, Högelin KA, Reichen I, Ziegler M, et al. Intrathecal immune reactivity against Measles-, Rubella-, and Varicella Zoster viruses is associated with cerebrospinal fluid inflammation in multiple sclerosisMultiple Sclerosis Journal. 2024;30(13):1598–1608. Available from: https://dx.doi.org/10.1177/13524585241279645

  22. Rani A, Ergün S, Karnati S, Jha HC. Understanding the link between neurotropic viruses, BBB permeability, and MS pathogenesisJournal of NeuroVirology. 2024;30(1):22–38. Available from: https://dx.doi.org/10.1007/s13365-023-01190-8

  23. Agostini S, Mancuso R, Costa AS, Citterio LA, Guerini FR, Meloni M, et al. A Possible Role for HSV-1-Specific Humoral Response and PILRA rs1859788 Polymorphism in the Pathogenesis of Parkinson’s DiseaseVaccines. 2021;9(7):1–10. Available from: https://dx.doi.org/10.3390/vaccines9070686

  24. Komaroff AL, Pellett PE, Jacobson S. Human Herpesviruses 6A and 6B in Brain Diseases: Association versus CausationClinical Microbiology Reviews. 2020;34(1):1–36. Available from: https://dx.doi.org/10.1128/cmr.00143-20

  25. Hera BDL, Urcelay E. HERVs in Multiple Sclerosis — From Insertion to Therapy. In: Open ac. (p. 169) 2016.

  26. Houen G, Trier NH, Frederiksen JL. Epstein-Barr Virus and Multiple SclerosisFrontiers in immunology. 2020;11:1–11. Available from: https://doi.org/10.3389/fimmu.2020.587078

  27. Jha NK, Ojha S, Jha SK, Dureja H, Singh SK, Shukla SD, et al. Evidence of Coronavirus (CoV) Pathogenesis and Emerging Pathogen SARS-CoV-2 in the Nervous System: A Review on Neurological Impairments and ManifestationsJournal of Molecular Neuroscience. 2021;71(11):2192–2209. Available from: https://doi.org/10.1007/s12031-020-01767-6

  28. Bellucci G, Rinaldi V, Buscarinu MC, Reniè R, Bigi R, Pellicciari G, et al. Multiple Sclerosis and SARS-CoV-2: Has the Interplay Started? Frontiers in Immunology. 2021;12:1–14. Available from: https://doi.org/10.3389/fimmu.2021.755333

  29. Frau J, Coghe G, Lorefice L, Fenu G, Cocco E. Infections and Multiple Sclerosis: From the World to Sardinia, From Sardinia to the WorldFrontiers in Immunology. 2021;12:1–7. Available from: https://dx.doi.org/10.3389/fimmu.2021.728677

  30. James RE, Schalks R, Browne E, Eleftheriadou I, Munoz CP, Mazarakis ND, et al. Persistent elevation of intrathecal pro-inflammatory cytokines leads to multiple sclerosis-like cortical demyelination and neurodegenerationActa Neuropathologica Communications. 2020;8(1):1–18. Available from: https://dx.doi.org/10.1186/s40478-020-00938-1

  31. Libbey JE, Cusick MF, Fujinami RS. Role of Pathogens in Multiple SclerosisInternational Reviews of Immunology. 2014;33(4):266–283. Available from: https://dx.doi.org/10.3109/08830185.2013.823422

  32. Kang GG, Trevaskis NL, Murphy AJ, Febbraio MA. Diet-induced gut dysbiosis and inflammation: Key drivers of obesity-driven NASHiScience. 2023;26:1–23. Available from: https://dx.doi.org/10.1016/j.isci.2022.105905

  33. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolismGut Microbes. 2016;7(3):189–200. Available from: https://dx.doi.org/10.1080/19490976.2015.1134082

  34. Rutsch A, Kantsjö JB, Ronchi F. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and PathologyThe Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front Immunol. 2020;11:1–24. Available from: https://doi.org/10.3389/fimmu.2020.604179

  35. Lou HC. Dopamine precursors and brain function in phenylalanine hydroxylase deficiencyActa Paediatrica Suppl. 1994;407:86–88. Available from: https://doi.org/10.1111/j.1651-2227.1994.tb13461.x

  36. He W, Wu G. Metabolism of Amino Acids in the Brain and Their Roles in Regulating Food IntakeAmino Acids in Nutrition and Health. 2020:167–185. Available from: https://doi.org/10.1007/978-3-030-45328-2_10

  37. Gao Y, Zhou J, Qi H, Wei J, Yang Y, Yue J, et al. LncRNA lncLy6C induced by microbiota metabolite butyrate promotes differentiation of Ly6Chigh to Ly6Cint/neg macrophages through lncLy6C/C/EBPβ/Nr4A1 axisCell Discovery. 2020;6(1):1–14. Available from: https://dx.doi.org/10.1038/s41421-020-00211-8

  38. Turner TAA, Lehman P, Ghimire S, Shahi SK, Mangalam A. Game of microbes: the battle within – gut microbiota and multiple sclerosisGut Microbes. 2024;16(1):1–25. Available from: https://doi.org/10.1080/19490976.2024.2387794

  39. Na K, Oh BC, Jung Y. Multifaceted role of CD14 in innate immunity and tissue homeostasisCytokine & Growth Factor Reviews. 2023;74:100–107. Available from: https://dx.doi.org/10.1016/j.cytogfr.2023.08.008

  40. Sterling KG, Dodd GK, Alhamdi S, Asimenios PG, Dagda RK, Meirleir KLD, et al. Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune DiseaseInternational Journal of Molecular Sciences. 2022;23(21):1–35. Available from: https://dx.doi.org/10.3390/ijms232113328

  41. Anand N, Gorantla VR, Chidambaram SB. The Role of Gut Dysbiosis in the Pathophysiology of Neuropsychiatric DisordersCells. 2022;12(1):1–30. Available from: https://dx.doi.org/10.3390/cells12010054

  42. Cekanaviciute E, Yoo BB, Runia TF, Debelius JW, Singh S, Nelson CA, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse modelsProceedings of the National Academy of Sciences. 2017;114(40):10713–10718. Available from: https://dx.doi.org/10.1073/pnas.1711235114

  43. Pröbstel AK, Zhou X, Baumann R, Wischnewski S, Kutza M, Rojas OL, et al. Gut microbiota–specific IgA+ B cells traffic to the CNS in active multiple sclerosisScience Immunology. 2020;5(53). Available from: https://doi.org/10.1126/sciimmunol.abc7191

  44. Stanisavljević S, Čepić A, Bojić S, Veljović K, Mihajlović S, Đedović N, et al. Oral neonatal antibiotic treatment perturbs gut microbiota and aggravates central nervous system autoimmunity in Dark Agouti ratsScientific Reports. 2019;9(1):1–13. Available from: https://dx.doi.org/10.1038/s41598-018-37505-7

  45. Arpaia N, Campbell C, Fan X, Dikiy S, Veeken Jvd, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generationNature. 2013;504(7480):451–455. Available from: https://dx.doi.org/10.1038/nature12726

  46. Correale J, Hohlfeld R, Baranzini SE. The role of the gut microbiota in multiple sclerosisNature Reviews Neurology. 2022;18(9):544–558. Available from: https://dx.doi.org/10.1038/s41582-022-00697-8

  47. Jadidi‐Niaragh F, Mirshafiey A. Th17 Cell, the New Player of Neuroinflammatory Process in Multiple SclerosisScandinavian Journal of Immunology. 2011;74(1):1–13. Available from: https://dx.doi.org/10.1111/j.1365-3083.2011.02536.x

  48. Mentis AFA, Dardiotis E, Grigoriadis N, Petinaki E, Hadjigeorgiou GM. Viruses and Multiple Sclerosis: From Mechanisms and Pathways to Translational Research OpportunitiesMolecular Neurobiology. 2017;54(5):3911–3923. Available from: https://dx.doi.org/10.1007/s12035-017-0530-6

Cite this article

B Nayana, K C Sandeep, N S Uzma. The Microbiome-Neurodegeneration Nexus in Multiple Sclerosis. AJ J Med Sci 2025;2(2):52–59.

Views
101
Downloads
47
Citations