AJ Journal of Medical Sciences

Volume: 2 Issue: 3

  • Open Access
  • Review Article

Mechanisms of Oxidative Stress in the Human Body: A Review

Ali Faris Hassan1,*, Nada Naji Al-Shawi1, Rita Fayyadh Elia1

 

1Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq


* Corresponding author.
Ali Faris Hassan
[email protected]

 

Year: 2025, Page: 108-114, Doi: https://doi.org/10.71325/ajjms.v2i3.2 5.49

Received: Sept. 30, 2025 Accepted: Oct. 10, 2025 Published: Nov. 15, 2025

Abstract

Oxidative stress, an imbalance between pro-oxidant agents and antioxidant agents in which the pro-oxidant agents exceed the antioxidant concentration, has become a pivotal mechanism in the onset and advancement of several human illnesses. Although physiologically crucial for cellular communication, immune defense, and adaptability, excessive oxygen radical production surpasses antioxidant capability, leading to biomolecular damage and malfunction. This study seeks to thoroughly analyze the processes that induce oxidative stress in the human body, highlighting both endogenous and external sources, along with the complex association between oxygen radicals and the production of pro-inflammatory cytokines. Endogenous factors include mitochondrial electron leakage, NADPH oxidase activity, endoplasmic reticulum stress, peroxisomal metabolism, xanthine oxidase activity, cytochrome P450 uncoupling, and transition metal-mediated Fenton chemistry. Exogenous inducers, including cigarette smoke, air pollution, heavy metals, alcohol, food excess, psychological stress, and xenobiotic exposure, exacerbate oxidative stress, frequently interacting synergistically with endogenous processes. Simultaneously, inflammatory processes emerge not only as a result of reactive oxygen radical but also sustain their generation via cytokine signaling, NF-κB activation, inflammasome assembly, and the synthesis of peroxynitrite from nitric oxide, establishing a detrimental cycle of oxidative-inflammatory injury.

 

Keywords: Antioxidant defenses, Endogenous and exogenous stressors, Inflammatory pathways, Oxidative stress, Reactive oxygen species (ROS)

 

 

References

1. Abd El-Hameed AM, Yousef AI, Abd El-Twab SM, El-Shahawy AA, Abdel-Moneim A. Hepatoprotective Effects of Polydatin-Loaded Chitosan Nanoparticles in Diabetic Rats: Modulation of Glucose Metabolism, Oxidative Stress, and Inflammation BiomarkersBiochemistry (Moscow). 2021; 86 (2). Available from: https://doi.org/10.1134/s0006297921020061

2. Radhi A, Al-Shawi N, Hassan A. Impact of omega 3 alone or in combination with irinotecan on bone marrow and spleen of rats: <I>in vivo</I> studyIraqi Journal of Pharmaceutical Sciences ( P-ISSN 1683 - 3597 E-ISSN 2521 - 3512). 2023; 32 (1). Available from: https://doi.org/10.31351/vol32iss1pp53-58

3. Alegre GFS, Pastore GM. NAD+ Precursors Nicotinamide Mononucleotide (NMN) and Nicotinamide Riboside (NR): Potential Dietary Contribution to HealthCurrent Nutrition Reports. 2023; 12 (3). Available from: https://doi.org/10.1007/s13668-023-00475-y

4. Alfonso-Prieto M, Biarnés X, Vidossich P, Rovira C. The Molecular Mechanism of the Catalase ReactionJournal of the American Chemical Society. 2009; 131 (33). Available from: https://doi.org/10.1021/ja9018572

5. Bakirezer SD, Yaltirik CK, Kaya AH, Yilmaz SG, Ozdogan S, Billur D <i>et al</i>. The Evaluation of Glutathione Reductase and Malondialdehyde Levels in Patients With Lumbar Disc Degeneration DiseaseIn Vivo. 2019; 33 (3). Available from: https://doi.org/10.21873/invivo.11543

6. Bartesaghi S, Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitrationRedox Biology. 2018; 14 Available from: https://doi.org/10.1016/j.redox.2017.09.009

7. Berzosa C, Cebrián I, Fuentes-Broto, Gómez-Trullén E, Piedrafita E, Martínez-Ballarín E <i>et al</i>. Acute Exercise Increases Plasma Total Antioxidant Status and Antioxidant Enzyme Activities in Untrained MenBioMed Research International. 2011; 2011 (1). Available from: https://doi.org/10.1155/2011/540458

8. Lencina AM, Franza T, Sullivan MJ, Ulett GC, Ipe DS, Gaudu P, Gennis RB, Schurig-Briccio LA. Type 2 NADH Dehydrogenase Is the Only Point of Entry for Electrons into the Streptococcus agalactiae Respiratory Chain and Is a Potential Drug TargetmBio. 2018; 9 (4). Available from: https://doi.org/10.1128/mbio.01034-18

9. Fisher AB. Redox Signaling Across Cell MembranesAntioxidants & Redox Signaling. 2009; 11 (6). Available from: https://doi.org/10.1089/ars.2008.2378

10. Singh G, Pachouri UC, Khaidem DC, Kundu A, Chopra C, Singh P. Mitochondrial DNA Damage and DiseasesF1000Research. 2015; 4 Available from: https://doi.org/10.12688/f1000research.6665.1

11. Panday A, Sahoo M, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunity-associated pathologiesCellular & Molecular Immunology. 2015; 12 (1). Available from: https://doi.org/10.1038/cmi.2014.89

12. Bedard K, Krause KH. The NOX Family of ROS-Generating NADPH Oxidases: Physiology and PathophysiologyPhysiological Reviews. 2007; 87 (1). Available from: https://doi.org/10.1152/physrev.00044.2005

13. Zeeshan HM, Lee GH, Kim HR, Chae HJ. Endoplasmic Reticulum Stress and Associated ROSInternational Journal of Molecular Sciences. 2016; 17 (3). Available from: https://doi.org/10.3390/ijms17030327

14. Tian J, Niu Z, Yang H, Wang C, Guan L, Zhao L, Shi D, Zhang Z. PERK/Sestrin2 Signaling Pathway Mediated Autophagy Regulates Human Cardiomyocytes Apoptosis Induced by Traffic-Related PM2.5 and Diverse ConstituentsInternational Journal of Molecular Sciences. 2025; 26 (8). Available from: https://doi.org/10.3390/ijms26083784

15. Sandalio LM, Rodríguez-Serrano M, Romero-Puertas MC, del Río LA. Role of Peroxisomes as a Source of Reactive Oxygen Species (ROS) Signaling MoleculesSubcellular Biochemistry. 2013; 69 Available from: https://doi.org/10.1007/978-94-007-6889-5_13

16. Kim H, Hwang J, Park C, Park R. Redox system and ROS-related disorders in peroxisomesFree Radical Research. 2024; 58 (10). Available from: https://doi.org/10.1080/10715762.2024.2427088

17. Umamaheswari M, AsokKumar K, Somasundaram A, Sivashanmugam T, Subhadradevi V, Ravi TK. Xanthine oxidase inhibitory activity of some Indian medical plantsJournal of Ethnopharmacology. 2007; 109 (3). Available from: https://doi.org/10.1016/j.jep.2006.08.020

18. Vergeade A, Mulder P, Vendeville C, Ventura-Clapier R, Thuillez C, Monteil C. Xanthine Oxidase Contributes to Mitochondrial ROS Generation in an Experimental Model of Cocaine-Induced Diastolic DysfunctionJournal of Cardiovascular Pharmacology. 2012; 60 (6). Available from: https://doi.org/10.1097/fjc.0b013e318271223c

19. Guengerich F. Cytochrome p450 enzymes in the generation of commercial productsNature Reviews Drug Discovery. 2002; 1 (5). Available from: https://doi.org/10.1038/nrd792

20. Veith A, Moorthy B. Role of cytochrome P450s in the generation and metabolism of reactive oxygen speciesCurrent Opinion in Toxicology. 2018; 7 Available from: https://doi.org/10.1016/j.cotox.2017.10.003

21. Winterbourn CC. Toxicity of iron and hydrogen peroxide: the Fenton reactionToxicology Letters. 1995; 82-83 Available from: https://doi.org/10.1016/0378-4274(95)03532-x

22. Chen HY. Why the Reactive Oxygen Species of the Fenton Reaction Switches from Oxoiron(IV) Species to Hydroxyl Radical in Phosphate Buffer Solutions? A Computational RationaleACS Omega. 2019; 4 (9). Available from: https://doi.org/10.1021/acsomega.9b02023

23. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative Stress: An Essential Factor in the Pathogenesis of Gastrointestinal Mucosal DiseasesPhysiological Reviews. 2014; 94 (2). Available from: https://doi.org/10.1152/physrev.00040.2012

24. Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancerMutation Research/Reviews in Mutation Research. 2021; 787 Available from: https://doi.org/10.1016/j.mrrev.2021.108365

25. Lodovici M, Bigagli E. Oxidative Stress and Air Pollution ExposureJournal of Toxicology. 2011; 2011 Available from: https://doi.org/10.1155/2011/487074

26. Kurt OK, Zhang J, Pinkerton KE. Pulmonary health effects of air pollutionCurrent Opinion in Pulmonary Medicine. 2016; 22 (2). Available from: https://doi.org/10.1097/mcp.0000000000000248

27. Valko M, Morris H, Cronin MT. Metals, Toxicity and Oxidative StressCurrent Medicinal Chemistry. 2005; 12 (10). Available from: https://doi.org/10.2174/0929867053764635

28. Tsermpini EE, Plemenitaš Ilješ A, Dolžan V. Alcohol-Induced Oxidative Stress and the Role of Antioxidants in Alcohol Use Disorder: A Systematic ReviewAntioxidants. 2022; 11 (7). Available from: https://doi.org/10.3390/antiox11071374

29. Tan BL, Norhaizan ME. Effect of High-Fat Diets on Oxidative Stress, Cellular Inflammatory Response and Cognitive FunctionNutrients. 2019; 11 (11). Available from: https://doi.org/10.3390/nu11112579

30. Salim S. Oxidative Stress and Psychological DisordersCurrent Neuropharmacology. 2014; 12 (2). Available from: https://doi.org/10.2174/1570159x11666131120230309

31. Mohammed YH, Hassan AF. Analyzing the Potential Antioxidative Effects of Omega-369 in Preventing Acetaminophen-Induced Liver DamageAl-Rafidain Journal of Medical Sciences ( ISSN: 2789-3219 ). 2023; 4 Available from: https://doi.org/10.54133/ajms.v4i.126

32. Biswas SK. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox?Oxidative Medicine and Cellular Longevity. 2016; 2016 (1). Available from: https://doi.org/10.1155/2016/5698931

33. Sargent AL, Leedberg JA, Burress JE, Dalwadi PS, O'Fallon KS, Gaffney-Stomberg E, Gaines PCW. Quantitatively Assessing the Respiratory Burst in Innate Immune CellsMethods in Molecular Biology. 2023; 2614 Available from: https://doi.org/10.1007/978-1-0716-2914-7_4

34. Thomas DC. The phagocyte respiratory burst: Historical perspectives and recent advancesImmunology Letters. 2017; 192 Available from: https://doi.org/10.1016/j.imlet.2017.08.016

35. Yang D, Elner SG, Bian ZM, Till GO, Petty HR, Elner VM. Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cellsExperimental Eye Research. 2007; 85 (4). Available from: https://doi.org/10.1016/j.exer.2007.06.013

36. Turpaev KT. Reactive Oxygen Species and Regulation of Gene ExpressionBiochemistry (Moscow). 2002; 67 (3). Available from: https://doi.org/10.1023/a:1014819832003

37. Fadhel MH, Hassan AF. Protective Effect of Omega-7 against Doxorubicin-Induced Cardiotoxicity in Male RatsIraqi Journal of Pharmaceutical Sciences( P-ISSN 1683 - 3597 E-ISSN 2521 - 3512). 2023; 32 (3). Available from: https://doi.org/10.31351/vol32iss3pp35-40

38. Morgan M, Liu Z. Crosstalk of reactive oxygen species and NF-κB signalingCell Research. 2011; 21 (1). Available from: https://doi.org/10.1038/cr.2010.178

39. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and RegulationInternational Journal of Molecular Sciences. 2019; 20 (13). Available from: https://doi.org/10.3390/ijms20133328

40. Abais JM, Xia M, Zhang Y, Boini KM, Li PL. Redox Regulation of NLRP3 Inflammasomes: ROS as Trigger or Effector?Antioxidants &amp; Redox Signaling. 2015; 22 (13). Available from: https://doi.org/10.1089/ars.2014.5994

41. Khansari N, Shakiba Y, Mahmoudi M. Chronic Inflammation and Oxidative Stress as a Major Cause of Age- Related Diseases and CancerRecent Patents on Inflammation &amp; Allergy Drug Discovery. 2009; 3 (1). Available from: https://doi.org/10.2174/187221309787158371

42. Batty M, Bennett MR, Yu E. The Role of Oxidative Stress in AtherosclerosisCells. 2022; 11 (23). Available from: https://doi.org/10.3390/cells11233843

43. Manna P, Jain SK. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic StrategiesMetabolic Syndrome and Related Disorders. 2015; 13 (10). Available from: https://doi.org/10.1089/met.2015.0095

44. Pacher P, Beckman JS, Liaudet L. Nitric Oxide and Peroxynitrite in Health and DiseasePhysiological Reviews. 2007; 87 (1). Available from: https://doi.org/10.1152/physrev.00029.2006

45. Chandimali N, Bak SG, Park EH, Lim HJ, Won YS, Kim EK <i>et al</i>. Free radicals and their impact on health and antioxidant defenses: a reviewCell Death Discovery. 2025; 11 (1). Available from: https://doi.org/10.1038/s41420-024-02278-8

46. Wynn TA, Vannella KM. Macrophages in Tissue Repair, Regeneration, and FibrosisImmunity. 2016; 44 (3). Available from: https://doi.org/10.1016/j.immuni.2016.02.015

47. Ngo V, Duennwald ML. Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human DiseaseAntioxidants. 2022; 11 (12). Available from: https://doi.org/10.3390/antiox11122345

 

Cite this article

Ali Faris Hassan, Nada Naji Al-Shawi, Rita Fayyadh Elia. Mechanisms of Oxidative Stress in the Human Body: A Review. AJ J Med Sci 2025;2(3):108-114

 
Views
42
Downloads
33
Citations